Breadcrumb
- Home
- Generative AI For Education Hub
- Research Study Repository
- Descriptive – Product Development
Search and Filter
Submit a research study
Contribute to the repository:
Descriptive – Product Development
Research synthesis is AI-generated, human reviewed. Updated 09/2025.
Displaying 121 - 150 of 341
FACET: Teacher-Centred LLM-Based Multi-Agent Systems- Towards Personalized Educational Worksheets
Jana Gonnermann-Muller, Jennifer Haase, Konstantin Fackeldey, Sebastian Pokutta. (08/2025). arXiv. http://arxiv.org/pdf/2508.11401v2
AI-Supported Mini-Labs: Combining Smartphone-Based Experiments and Multimodal AI
Jochen Kuhn, David J. Rakestraw, Stefan Stefan KŸchemann, Patrik Vogt. (08/2025). arXiv. http://arxiv.org/pdf/2508.16320v1
Reliable generation of isomorphic physics problems using ChatGPT with prompt-chaining and tool use
Zhongzhou Chen. (08/2025). arXiv. http://arxiv.org/pdf/2508.14755v1
Enabling Multi-Agent Systems as Learning Designers: Applying Learning Sciences to AI Instructional Design
Jiayi Wang, Ruiwei Xiao, Xinying Hou, John Stamper. (08/2025). arXiv. http://arxiv.org/pdf/2508.16659v1
Breakable Machine: A K-12 Classroom Game for Transformative AI Literacy Through Spoofing and eXplainable AI (XAI)
Olli Hilke, Nicolas Pope, Juho Kahila, Henriikka Vartiainen, Teemu Roos, Tuomo Parkki, Matti Tedre. (08/2025). arXiv. http://arxiv.org/pdf/2508.14201v1
Learning to Use AI for Learning: How Can We Effectively Teach and Measure Prompting Literacy for K-12 Students?
Ruiwei Xiao, Xinying Hou, Ying-Jui Tseng, Hsuan Nieu, Guanze Liao, John Stamper, Kenneth R. Koedinger. (08/2025). arXiv. http://arxiv.org/pdf/2508.13962v1
Developing a ChatGPT-Based Tool for Physics Experiment Teaching
Yifeng Liu, Min Li, Zhaojun Zhang, Youkang Fang, Meibao Qin. (08/2025). arXiv. http://arxiv.org/pdf/2508.13011v1
PAPPL: Personalized AI-Powered Progressive Learning Platform
Shayan Bafandkar, Sungyong Chung, Homa Khosravian, Alireza Talebpour. (08/2025). arXiv. http://arxiv.org/pdf/2508.14109v1
Designing an Interdisciplinary Artificial Intelligence Curriculum for Engineering: Evaluation and Insights from Experts
Johannes Schleiss, Anke Manukjan, Michelle Ines Bieber, Sebastian Lang, Sebastian Stober. (08/2025). arXiv. http://arxiv.org/pdf/2508.14921v1
CoGrader: Transforming Instructors' Assessment of Project Reports through Collaborative LLM Integration
Zixin Chen, Jiachen Wang, Yumeng Li, Haobo Li, Chuhan Shi, Rong Zhang, Huamin Qu. (08/2025). arXiv. http://arxiv.org/pdf/2507.20655v2
RPKT: Learning What You Don't Know - Recursive Prerequisite Knowledge Tracing in Conversational AI Tutors for Personalized Learning
Jinwen Tang, Qiming Guo, Zhicheng Tang. (08/2025). arXiv. http://arxiv.org/pdf/2508.11892v1
From Misunderstandings To Learning Opportunities: Leveraging Generative AI In Discussion Forums To Support Student Learning
Stanislav Pozdniakov, Jonathan Brazil, Oleksandra Poquet, Stephan Krusche, Santiago Berrezueta-Guzman, Shazia Sadiq, Hassan Khosravi. (08/2025). arXiv. http://arxiv.org/pdf/2508.11150v1
Navigating the New Landscape: A Conceptual Model for Project-Based Assessment (PBA) in the Age of GenAI
Rajan Kadel, Samar Shailendra, Urvashi Rahul Saxena. (08/2025). arXiv. http://arxiv.org/pdf/2508.11709v1
Next-Gen Education: Enhancing AI for Microlearning
Saha, S., Rahbari, F., Sadique, F., Velamakanni, S. K. C., Farooque, M., Rothwell, W. J.. (08/2025). arXiv. http://arxiv.org/pdf/2508.11704v1
Listening with Language Models: Using LLMs to Collect and Interpret Classroom Feedback
Sai Siddartha Maram, Ulia Zaman, Magy Seif El-Nasr. (08/2025). arXiv. http://arxiv.org/pdf/2508.11707v1
Designing a Feedback-Driven Decision Support System for Dynamic Student Intervention
Timothy Oluwapelumi Adeyemi, Nadiah Fahad AlOtaibi. (08/2025). arXiv. http://arxiv.org/pdf/2508.07107v2
Towards Experience-Centered AI: A Framework for Integrating Lived Experience in Design and Development
Sanjana Gautam, Mohit Chandra, Ankolika De, Tatiana Chakravorti, Girik Malik, Munmun De Choudhury. (08/2025). arXiv. http://arxiv.org/pdf/2508.06849v1
Discerning Minds Or Generic Tutors? Evaluating Instructional Guidance Capabilities In Socratic LLMS
Ying Liu, Can Li, Ting Zhang, Mei Wang, Qiannan Zhu, Jian Li, Hua Huang. (08/2025). arXiv. http://arxiv.org/pdf/2508.06583v1
Dean of LLM Tutors: Exploring Comprehensive and Automated Evaluation of LLM-generated Educational Feedback via LLM Feedback Evaluators
Keyang Qian, Yixin Cheng, Rui Guan, Wei Dai, Flora Jin, Kaixun Yang, Sadia Nawaz, Zachari Swiecki, Guanliang Chen, Lixiang Yan, Dragan Ga_evic. (08/2025). arXiv. http://arxiv.org/pdf/2508.05952v1
Building Effective Safety Guardrails in AI Education Tools
Hannah-Beth Clark, Laura Benton, Emma Searle, Margaux Dowland, Matthew Gregory, Will Gayne, John Roberts. (08/2025). arXiv. http://arxiv.org/pdf/2508.05360v1
When AI Evaluates Its Own Work: Validating Learner-Initiated, AI-Generated Physics Practice Problems
Tobias Geisler, Gerd Kortemeyer. (08/2025). arXiv. http://arxiv.org/pdf/2508.03085v1
A Mixed User-Centered Approach to Enable Augmented Intelligence in Intelligent Tutoring Systems: The Case of MathAlde app
Guilherme Guerino, Luiz Rodrigues, Luana Bianchini, Mariana Alves, Marcelo Marinho, Thomaz Veloso, Valmir Macario, Diego Dermeval, Thales Vieira, Ig Bittencourt, Seiji Isotani. (08/2025). arXiv. http://arxiv.org/pdf/2508.00103v2
A Theory of Adaptive Scaffolding for LLM-Based Pedagogical Agents
Clayton Cohn, Surya Rayala, Namrata Srivastava, Joyce Horn Fonteles, Shruti Jain, Xinying Luo, Divya Mereddy, Naveeduddin Mohammed, Gautam Biswas. (08/2025). arXiv. http://arxiv.org/pdf/2508.01503v1
WIP: Enhancing Game-Based Learning with AI-Driven Peer Agents
Chengzhang Zhu, Cecile H. Sam, Yanlai Wu, Ying Tang. (08/2025). arXiv. http://arxiv.org/pdf/2508.01169v1
Bridging LLMs and Symbolic Reasoning in Educational QA Systems: Insights from the XAI Challenge at IJCNN 2025
Long S. T. Nguyen, Khang H. N. Vo, Thu H. A. Nguyen, Tuan C. Bui, Duc Q. Nguyen, Thanh-Tung Tran, Anh D. Nguyen, Minh L. Nguyen, Fabien Baldacci, Thang H. Bui, Emanuel Di Nardo, Angelo Ciaramella, Son H. Le, Ihsan Ullah, Lorenzo Di Rocco and Tho T. Quan. (08/2025). arXiv. http://arxiv.org/pdf/2508.01263v1
Teaching at Scale: Leveraging AI to Evaluate and Elevate Engineering Education
J.-F. Chamberland, M. Carlisle, A. Jayaraman, K. R. Narayanan, S. Palsole, K. Watson. (08/2025). arXiv. http://arxiv.org/pdf/2508.02731v1
Transparent Adaptive Learning via Data-Centric Multimodal Explainable AI
MARYAM MOSLEH, MARIE DEVLIN, ELLIS SOLAIMAN. (08/2025). arXiv. http://arxiv.org/pdf/2508.00665v1
Explainable AI and Machine Learning for Exam-based Student Evaluation: Causal and Predictive Analysis of Socio-academic and Economic Factors
Bushra Akter, Md Biplob Hosen, Sabbir Ahmed, Mehrin Anannya, Md. Farhad Hossain. (08/2025). arXiv. http://arxiv.org/pdf/2508.00785v1
Automated Feedback on Student-Generated UML and ER Diagrams Using Large Language Models
Sebastian GŸrtl, Gloria Schimetta, David Kerschbaumer, Michael Liut, Alexander Steinmaurer. (07/2025). arXiv. http://arxiv.org/pdf/2507.23470v1
