Search and Filter

Submit a research study

Contribute to the repository:

Add a paper

Descriptive – Product Development

Ai & Data Competencies: Scaffolding Holistic Ai Literacy In Higher Education

This chapter introduces the AI & Data Acumen Learning Outcomes Framework, a comprehensive tool designed to guide the integration of AI literacy across higher education. Developed through a collaborative process, the framework defines key AI and data-related competencies across four proficiency levels and seven knowledge dimensions. It provides a structured approach for educators to scaffold student learning in AI, balancing technical skills with ethical considerations and sociocultural awareness.

Mentor: A Metacognition-Driven Self-Evolution Framework For Uncovering And Mitigating Implicit Risks In Llms On Domain Tasks

Ensuring the safety and value alignment of large language models (LLMs) is critical for their deployment. Current alignment efforts primarily target explicit risks such as bias, hate speech, and violence. However, they often fail to address deeper, domain-specific implicit risks and lack a flexible, generalizable framework applicable across diverse specialized fields. Hence, we proposed MENTOR: A MEtacognition-driveN self-evoluTion framework for uncOvering and mitigating implicit Risks in LLMs on Domain Tasks.

Exploring ChatGPT's Capabilities, Stability, Potential And Risks In Conducting Psychological Counseling Through Simulations In School Counseling

This study explores ChatGPT's capabilities, stability, and risks in simulating psychological counseling sessions in a school counseling context. Using scripted role-plays between a human counselor and an AI client, we examine how a large language model performs core counseling skills such as empathy, reflection, summarizing, and asking open-ended questions, as well as its ability to maintain therapeutic communication over time.

Supporting Productivity Skill Development In College Students Through Social Robot Coaching: A Proof-Of-Concept

College students often face academic challenges that hamper their productivity and well-being. Although self-help books and productivity apps are popular, they often fall short. Books provide generalized, non-interactive guidance, and apps are not inherently educational and can hinder the development of key organizational skills. Traditional productivity coaching offers personalized support, but is resource-intensive and difficult to scale.

Aiot-Based Smart Education System: A Dual-Layer Authentication And Context-Aware Tutoring Framework For Learning Environments.

The AIoT-Based Smart Education System integrates Artificial Intelligence and IoT to address persistent challenges in contemporary classrooms: attendance fraud, lack of personalization, student disengagement, and inefficient resource use.

Simulated Human Learning In A Dynamic, Partially-Observed, Time-Series Environment

While intelligent tutoring systems (ITSs) can use information from past students to personalize instruction, each new student is unique. Moreover, the education problem is inherently difficult because the learning process is only partially observable. We therefore develop a dynamic, time-series environment to simulate a classroom setting, with student-teacher interventions - including tutoring sessions, lectures, and exams. In particular, we design the simulated environment to allow for varying levels of probing interventions that can gather more information.

Eduagentqg: A Multi-Agent Workflow Framework For Personalized Question Generation

High-quality personalized question banks are crucial for supporting adaptive learning and individualized assessment. Manually designing questions is time-consuming and often fails to meet diverse learning needs, making automated question generation a crucial approach to reduce teachers' workload and improve the scalability of educational resources. However, most existing question generation methods rely on single-agent or rule-based pipelines, which still produce questions with unstable quality, limited diversity, and insufficient alignment with educational goals.

Systematically Thinking About The Complexity Of Code Structuring Exercises At Introductory Level

Decomposition and abstraction is an essential component of computational thinking, yet it is not always emphasized in introductory programming courses. In addition, as generative AI further reduces the focus on syntax and increases the importance of higher-level code reasoning, there is renewed opportunity to teach DA explicitly. In this paper, we introduce a framework for systematically assessing the complexity of code structuring tasks, where students must identify and separate meaningful abstractions within existing, unstructured code.

Assessing Problem Decomposition In Cs1 For The Genai Era

Problem decomposition--the ability to break down a large task into smaller, well-defined components--is a critical skill for effectively designing and creating large programs, but it is often not included in introductory computer science curricula. With the rise of generative AI (GenAI), students even at the introductory level are able to generate large quantities of code, and it is becoming increasingly important to equip them with the ability to decompose problems.

Report From Workshop On Dialogue Alongside Artificial Intelligence

Educational dialogue -- the collaborative exchange of ideas through talk -- is widely recognized as a catalyst for deeper learning and critical thinking in and across contexts. At the same time, artificial intelligence (AI) has rapidly emerged as a powerful force in education, with the potential to address major challenges, personalize learning, and innovate teaching practices. However, these advances come with significant risks: rapid AI development can undermine human agency, exacerbate inequities, and outpace our capacity to guide its use with sound policy.