The integration of generative artificial intelligence (GenAI) tools into education has been a game-changer for teaching and assessment practices, bringing new opportunities, but also novel challenges which need to be dealt with. This paper presents the Comprehensive AI Assessment Framework (CAIAF), an evolved version of the AI Assessment Scale (AIAS) by Perkins, Furze, Roe, and MacVaugh, targeted toward the ethical integration of AI into educational assessments. This is where the CAIAF differs, as it incorporates stringent ethical guidelines, with clear distinctions based on educational levels, and advanced AI capabilities of real-time interactions and personalized assistance. The framework developed herein has a very intuitive use, mainly through the use of a color gradient that enhances the user-friendliness of the framework. Methodologically, the framework has been developed through the huge support of a thorough literature review and practical insight into the topic, becoming a dynamic tool to be used in different educational settings. The framework will ensure better learning outcomes, uphold academic integrity, and promote responsible use of AI, hence the need for this framework in modern educational practice.
Comprehensive AI Assessment Framework: Enhancing Educational Evaluation with Ethical AI Integration
Date
Publisher
arXiv
Who benefits?
What is the application?