Search and Filter

Submit a research study

Contribute to the repository:

Add a paper

Generative Large Language Models for Knowledge Representation: A Systematic Review of Concept Map Generation

Authors
Xiaoming Zhai
Date
Publisher
arXiv
The rise of generative large language models (LLMs) has opened new opportunities for automating knowledge representation through concept maps, a long-standing pedagogical tool valued for fostering meaningful learning and higher-order thinking. Traditional construction of concept maps is labor-intensive, requiring significant expertise and time, limiting their scalability in education. This review systematically synthesizes the emerging body of research on LLM-enabled concept map generation, focusing on two guiding questions: (a) What methods and technical features of LLMs are employed to construct concept maps? (b) What empirical evidence exists to validate their educational utility? Through a comprehensive search across major databases and AI-in-education conference proceedings, 28 studies meeting rigorous inclusion criteria were analyzed using thematic synthesis. Findings reveal six major methodological categories: human-in-the-loop systems, weakly supervised learning models, fine-tuned domain-specific LLMs, pre-trained LLMs with prompt engineering, hybrid systems integrating knowledge bases, and modular frameworks combining symbolic and statistical tools. Validation strategies ranged from quantitative metrics (precision, recall, F1-score, semantic similarity) to qualitative evaluations (expert review, learner feedback). Results indicate LLM-generated maps hold promise for scalable, adaptive, and pedagogically relevant knowledge visualization, though challenges remain regarding validity, interpretability, multilingual adaptability, and classroom integration. Future research should prioritize interdisciplinary co-design, empirical classroom trials, and alignment with instructional practices to realize their full educational potential.
Who is the user?
Study design