Search and Filter

Submit a research study

Contribute to the repository:

Add a paper

Teaching – Assessment and Feedback

Young Children's Anthropomorphism Of An Ai Chatbot: Brain Activation And The Role Of Parent Co-Presence

Artificial Intelligence (AI) chatbots powered by a large language model (LLM) are entering young children's learning and play, yet little is known about how young children construe these agents or how such construals relate to engagement. We examined anthropomorphism of a social AI chatbot during collaborative storytelling and asked how children's attributions related to their behavior and prefrontal activation. Children at ages 5-6 (N = 23) completed three storytelling sessions: interacting with (1) an AI chatbot only, (2) a parent only, and (3) the AI and a parent together.

Feed-O-Meter: Investigating Ai-Generated Mentee Personas As Interactive Agents For Scaffolding Design Feedback Practice

Effective feedback, including critique and evaluation, helps designers develop design concepts and refine their ideas, supporting informed decision-making throughout the iterative design process. However, in studio-based design courses, students often struggle to provide feedback due to a lack of confidence and fear of being judged, which limits their ability to develop essential feedback-giving skills.

A Systematic Literature Review Of The Use Of Genai Assistants For Code Comprehension: Implications For Computing Education Research And Practice

The ability to comprehend code has long been recognized as an essential skill in software engineering. As programmers lean more heavily on generative artificial intelligence (GenAI) assistants to develop code solutions, it is becoming increasingly important for programmers to comprehend GenAI solutions so that they can verify their appropriateness and properly integrate them into existing code. At the same time, GenAI tools are increasingly being enlisted to provide programmers with tailored explanations of code written both by GenAI and humans.

Simulating Students With Large Language Models: A Review Of Architecture, Mechanisms, And Role Modelling In Education With Generative Ai

Simulated Students offer a valuable methodological framework for evaluating pedagogical approaches and modelling diverse learner profiles, tasks which are otherwise challenging to undertake systematically in real-world settings. Recent research has increasingly focused on developing such simulated agents to capture a range of learning styles, cognitive development pathways, and social behaviours. Among contemporary simulation techniques, the integration of large language models (LLMs) into educational research has emerged as a particularly versatile and scalable paradigm.

Closing The Loop: An Instructor-In-The-Loop Ai Assistance System For Supporting Student Help-Seeking In Programming Education

Timely and high-quality feedback is essential for effective learning in programming courses; yet, providing such support at scale remains a challenge. While AI-based systems offer scalable and immediate help, their responses can occasionally be inaccurate or insufficient. Human instructors, in contrast, may bring more valuable expertise but are limited in time and availability. To address these limitations, we present a hybrid help framework that integrates AI-generated hints with an escalation mechanism, allowing students to request feedback from instructors when AI support falls short.

Kidspeak: A General Multi-Purpose LLM For Kids' Speech Recognition And Screening

With the rapid advancement of conversational and diffusion-based AI, there is a growing adoption of AI in educational services, ranging from grading and assessment tools to personalized learning systems that provide targeted support for students. However, this adaptability has yet to fully extend to the domain of children's speech, where existing models often fail due to their reliance on datasets designed for clear, articulate adult speech.

Towards Synergistic Teacher-Ai Interactions With Generative Artificial Intelligence

Generative artificial intelligence (GenAI) is increasingly used in education, posing significant challenges for teachers adapting to these changes. GenAI offers unprecedented opportunities for accessibility, scalability and productivity in educational tasks. However, the automation of teaching tasks through GenAI raises concerns about reduced teacher agency, potential cognitive atrophy, and the broader deprofessionalisation of teaching.

Advisingwise: Supporting Academic Advising In Higher Education Settings Through A Human-In-The-Loop Multi-Agent Framework

Academic advising is critical to student success in higher education, yet high student-to-advisor ratios limit advisors' capacity to provide timely support, particularly during peak periods. Recent advances in Large Language Models (LLMs) present opportunities to enhance the advising process. We present AdvisingWise, a multi-agent system that automates time-consuming tasks, such as information retrieval and response drafting, while preserving human oversight.

Owlgorithm: Supporting Self-Regulated Learning In Competitive Programming Through Llm-Driven Reflection

We present Owlgorithm, an educational platform that supports Self-Regulated Learning (SRL) in competitive programming (CP) through AI-generated reflective questions. Leveraging GPT-4o, Owlgorithm produces context-aware, metacognitive prompts tailored to individual student submissions.

Pedagogy-Driven Evaluation Of Generative Ai-Powered Intelligent Tutoring Systems

The interdisciplinary research domain of Artificial Intelligence in Education (AIED) has a long history of developing Intelligent Tutoring Systems (ITSs) by integrating insights from technological advancements, educational theories, and cognitive psychology. The remarkable success of generative AI (GenAI) models has accelerated the development of large language model (LLM)-powered ITSs, which have potential to imitate human-like, pedagogically rich, and cognitively demanding tutoring.