Search and Filter

Submit a research study

Contribute to the repository:

Add a paper

Can LLMs Reliably Simulate Real Students' Abilities in Mathematics and Reading Comprehension?

Authors
KV Aditya Srivatsa,
Kaushal Kumar Maurya,
Ekaterina Kochmar
Date
Publisher
arXiv
Large Language Models (LLMs) are increasingly used as proxy students in the development of Intelligent Tutoring Systems (ITSs) and in piloting test questions. However, to what extent these proxy students accurately emulate the behavior and characteristics of real students remains an open question. To investigate this, we collected a dataset of 489 items from the National Assessment of Educational Progress (NAEP), covering mathematics and reading comprehension in grades 4, 8, and 12. We then apply an Item Response Theory (IRT) model to position 11 diverse and state-of-the-art LLMs on the same ability scale as real student populations. Our findings reveal that, without guidance, strong general-purpose models consistently outperform the average student at every grade, while weaker or domain-mismatched models may align incidentally. Using grade-enforcement prompts changes models' performance, but whether they align with the average grade-level student remains highly model- and prompt-specific: no evaluated model-prompt pair fits the bill across subjects and grades, underscoring the need for new training and evaluation strategies. We conclude by providing guidelines for the selection of viable proxies based on our findings.
What is the application?
Why use AI?