Search and Filter

Submit a research study

Contribute to the repository:

Add a paper

Visiomath: Benchmarking Figure-Based Mathematical Reasoning In Lmms

Authors
Can Li,
Ying Liu,
Ting Zhang,
Mei Wang,
Hua Huang
Date
Publisher
arXiv
Large Multimodal Models have achieved remarkable progress in integrating vision and language, enabling strong performance across perception, reasoning, and domain-specific tasks. However, their capacity to reason over multiple, visually similar inputs remains insufficiently explored. Such fine-grained comparative reasoning is central to real-world tasks, especially in mathematics and education, where learners must often distinguish between nearly identical diagrams to identify correct solutions. To address this gap, we present VisioMath, a curated benchmark of 1,800 high-quality K-12 mathematics problems in which all candidate answers are diagrams with subtle visual similarities. A comprehensive evaluation of state-of-the-art LMMs, covering both leading closed-source systems and widely adopted open-source models, reveals a consistent decline in accuracy as inter-image similarity increases. Analysis indicates that the dominant failure mode stems from image-text misalignment: rather than grounding reasoning in textual cues, models often resort to shallow positional heuristics, resulting in systematic errors. We further explore three alignment-oriented strategies, spanning training-free approaches and finetuning, and achieve substantial accuracy gains. We hope that VisioMath will serve as a rigorous benchmark and catalyst for developing LMMs toward deeper diagram understanding, precise comparative reasoning, and grounded multi-image-text integration.
Why use AI?