Search and Filter

Submit a research study

Contribute to the repository:

Add a paper

Outcomes – Numeracy

Ai-Driven Predictive Models For Optimizing Mathematics Education Technology: Enhancing Decision-Making Through Educational Data Mining And Meta-Analysis

This paper explores the challenge of achieving consistent effectiveness in integrating Mathematics Education Technology (MET) in K-12 classrooms, focusing on factors such as technology type, timing, and instructional strategies. It highlights the difficulties novice teachers face in optimizing MET compared to experienced educators, emphasizing the need to better understand the ideal duration and application of MET in various teaching settings. This study proposes using Artificial Intelligence (AI) to predict and optimize MET effectiveness, aiming to enhance student achievement.

Ai Tutoring Can Safely And Effectively Support Students: An Exploratory Rct In Uk Classrooms

One-to-one tutoring is widely considered the gold standard for personalized education, yet it remains prohibitively expensive to scale. To evaluate whether generative AI might help expand access to this resource, we conducted an exploratory randomized controlled trial (RCT) with __ = 165 students across fiveUKsecondaryschools. WeintegratedLearnLM—agenerativeAImodelfine-tunedforpedagogy—into chat-based tutoring sessions on the Eedi mathematics platform.

Physicseval: Inference-Time Techniques To Improve The Reasoning Proficiency Of Large Language Models On Physics Problems

The discipline of physics stands as a cornerstone of human intellect, driving the evolution of technology and deepening our understanding of the fundamental principles of the cosmos. Contemporary literature includes some works centered on the task of solving physics problems - a crucial domain of natural language reasoning. In this paper, we evaluate the performance of frontier LLMs in solving physics problems, both mathematical and descriptive. We also employ a plethora of inference-time techniques and agentic frameworks to improve the performance of the models.

Pedagogy-Driven Evaluation Of Generative Ai-Powered Intelligent Tutoring Systems

The interdisciplinary research domain of Artificial Intelligence in Education (AIED) has a long history of developing Intelligent Tutoring Systems (ITSs) by integrating insights from technological advancements, educational theories, and cognitive psychology. The remarkable success of generative AI (GenAI) models has accelerated the development of large language model (LLM)-powered ITSs, which have potential to imitate human-like, pedagogically rich, and cognitively demanding tutoring.

Artificial Intelligence In Elementary Stem Education: A Systematic Review Of Current Applications And Future Challenges

Artificial intelligence (AI) is transforming elementary STEM education, yet evidence remains fragmented. This systematic review synthesizes 258 studies (2020-2025) examining AI applications across eight categories: intelligent tutoring systems (45% of studies), learning analytics (18%), automated assessment (12%), computer vision (8%), educational robotics (7%), multimodal sensing (6%), AI-enhanced extended reality (XR) (4%), and adaptive content generation.

Large Language Models For Education And Research: An Empirical And User Survey-Based Analysis

Pretrained Large Language Models (LLMs) have achieved remarkable success across diverse domains, with education and research emerging as particularly impactful areas. Among current state-of-the-art LLMs, ChatGPT and DeepSeek exhibit strong capabilities in mathematics, science, medicine, literature, and programming. In this study, we present a comprehensive evaluation of these two LLMs through background technology analysis, empirical experiments, and a real-world user survey.

Simulated Human Learning In A Dynamic, Partially-Observed, Time-Series Environment

While intelligent tutoring systems (ITSs) can use information from past students to personalize instruction, each new student is unique. Moreover, the education problem is inherently difficult because the learning process is only partially observable. We therefore develop a dynamic, time-series environment to simulate a classroom setting, with student-teacher interventions - including tutoring sessions, lectures, and exams. In particular, we design the simulated environment to allow for varying levels of probing interventions that can gather more information.

Next Token Knowledge Tracing: Exploiting Pretrained Llm Representations To Decode Student Behaviour.

Modelling student knowledge is a key challenge when leveraging AI in education, with major implications for personalised learning. The Knowledge Tracing (KT) task aims to predict how students will respond to educational questions in learning environments, based on their prior interactions. Existing KT models typically use response correctness along with metadata like skill tags and timestamps, often overlooking the question text, which is an important source of pedagogical insight. This omission poses a lost opportunity while limiting predictive performance.

Eduagentqg: A Multi-Agent Workflow Framework For Personalized Question Generation

High-quality personalized question banks are crucial for supporting adaptive learning and individualized assessment. Manually designing questions is time-consuming and often fails to meet diverse learning needs, making automated question generation a crucial approach to reduce teachers' workload and improve the scalability of educational resources. However, most existing question generation methods rely on single-agent or rule-based pipelines, which still produce questions with unstable quality, limited diversity, and insufficient alignment with educational goals.

Explain With Visual Keypoints Like A Real Mentor! A Benchmark For Multimodal Solution Explanation

With the rapid advancement of mathematical reasoning capabilities in Large Language Models (LLMs), AI systems are increasingly being adopted in educational settings to support students' comprehension of problem-solving processes. However, a critical component remains underexplored in current LLM-generated explanations: multimodal explanation. In real-world instructional contexts, human tutors routinely employ visual aids, such as diagrams, markings, and highlights, to enhance conceptual clarity.