Search and Filter

Submit a research study

Contribute to the repository:

Add a paper

Farsimcqgen: A Persian Multiple-Choice Question Generation Framework

Authors
Mohammad Heydari Rad,
Rezvan Afari,
Saeedeh Momtazi
Date
Publisher
arXiv
Multiple-choice questions (MCQs) are commonly used in educational testing, as they offer an efficient means of evaluating learners' knowledge. However, generating high-quality MCQs, particularly in low-resource languages such as Persian, remains a significant challenge. This paper introduces FarsiMCQGen, an innovative approach for generating Persian-language MCQs. Our methodology combines candidate generation, filtering, and ranking techniques to build a model that generates answer choices resembling those in real MCQs. We leverage advanced methods, including Transformers and knowledge graphs, integrated with rule-based approaches to craft credible distractors that challenge test-takers. Our work is based on data from Wikipedia, which includes general knowledge questions. Furthermore, this study introduces a novel Persian MCQ dataset comprising 10,289 questions. This dataset is evaluated by different state-of-the-art large language models (LLMs). Our results demonstrate the effectiveness of our model and the quality of the generated dataset, which has the potential to inspire further research on MCQs.
What is the application?
Who is the user?
Why use AI?