Search and Filter

Submit a research study

Contribute to the repository:

Add a paper

School Leader

Measuring Teaching With Llms

Objective and scalable measurement of teaching quality is a persistent challenge in education. While Large Language Models (LLMs) offer potential, general-purpose models have struggled to reliably apply complex, authentic classroom observation instruments. This paper uses custom LLMs built on sentence-level embeddings, an architecture better suited for the long-form, interpretive nature of classroom transcripts than conventional subword tokenization. We systematically evaluate five different sentence embeddings under a data-efficient training regime designed to prevent overfitting.

Principled Design Of Interpretable Automated Scoring For Large-Scale Educational Assessments

AI-driven automated scoring systems offer scalable and efficient means of evaluating complex student-generated responses. Yet, despite increasing demand for transparency and interpretability, the field has yet to develop a widely accepted solution for interpretable automated scoring to be used in large-scale real-world assessments. This work takes a principled approach to address this challenge.

Quantum Annealing For Staff Scheduling In Educational Environments

We address a novel staff allocation problem that arises in the organization of collaborators among multiple school sites and educational levels. The problem emerges from a real case study in a public school in Calabria, Italy, where staff members must be distributed across kindergartens, primary, and secondary schools under constraints of availability, competencies, and fairness. To tackle this problem, we develop an optimization model and investigate a solution approach based on quantum annealing.

Geolog-Ia: Sistema Conversacional Sobre Tesis AcadéMicas

This study presents the development of Geolog-IA, a novel conversational system based on artificial intelligence that responds naturally to questions about geology theses from the Central University of Ecuador. Our proposal uses the Llama 3.1 and Gemini 2.5 language models, which are complemented by a Retrieval Augmented Generation (RAG) architecture and an SQLite database. This strategy allows us to overcome problems such as hallucinations and outdated knowledge.

A Principled Way To Think About Al In Education: Guidance For Action Based On Goals, Models Of Human Learning, And Use Of Technologies.

The rapid emergence of generative artificial intelligence (AI) and related technologies has the potential to dramatically influence higher education, raising questions about the roles of institutions, educators, and students in a technology-rich future. While existing discourse often emphasizes either the promise and peril of AI or its immediate implementation, this paper advances a third path: a principled framework for guiding the use of AI in teaching and learning.

Ai-Generated Essays: Characteristics And Implications On Automated Scoring And Academic Integrity

The rapid advancement of large language models (LLMs) has enabled the generation of coherent essays, making AI-assisted writing increasingly common in educational and professional settings. Using large-scale empirical data, we examine and benchmark the characteristics and quality of essays generated by popular LLMs and discuss their implications for two key components of writing assessments: automated scoring and academic integrity.

Securing Educational LLMs: A Generalised Taxonomy of Attacks on LLMs and DREAD Risk Assessment

Due to perceptions of efficiency and significant productivity gains, various organisations, including in education, are adopting Large Language Models (LLMs) into their workflows. Educator-facing, learner-facing, and institution-facing LLMs, collectively, Educational Large Language Models (eLLMs), complement and enhance the effectiveness of teaching, learning, and academic operations. However, their integration into an educational setting raises significant cybersecurity concerns.

Inclusive Education with AI: Supporting Special Needs and Tackling Language Barriers

Early childhood classrooms are becoming increasingly diverse, with students spanning a range of linguistic backgrounds and abilities. AI offers innovative tools to help educators create more inclusive learning environments by breaking down language barriers and providing tailored support for children with special needs. This chapter provides a comprehensive review of how AI technologies can facilitate inclusion in early education.

Exploring Generative AI Policies in Higher Education: A Comparative Perspective from China, Japan, Mongolia, and the USA

This study conducts a comparative analysis of national policies on Generative AI across four countries: China, Japan, Mongolia, and the USA. Employing the Qualitative Comparative Analysis (QCA) method, it examines the responses of these nations to Generative AI in higher education settings, scrutinizing the diversity in their approaches within this group. While all four countries exhibit a positive attitude toward Generative AI in higher education, Japan and the USA prioritize a human-centered approach and provide direct guidance in teaching and learning.

Fairaied: Navigating Fairness, Bias, And Ethics In Educational Ai Applications

The integration of AI in education holds immense potential for personalizing learning experiences and transforming instructional practices. However, AI systems can inadvertently encode and amplify biases present in educational data, leading to unfair or discriminatory outcomes. As researchers have sought to understand and mitigate these biases, a growing body of work has emerged examining fairness in educational AI. These studies, though expanding rapidly, remain fragmented due to differing assumptions, methodologies, and application contexts.