Measuring Teaching With Llms
Objective and scalable measurement of teaching quality is a persistent challenge in education. While Large Language Models (LLMs) offer potential, general-purpose models have struggled to reliably apply complex, authentic classroom observation instruments. This paper uses custom LLMs built on sentence-level embeddings, an architecture better suited for the long-form, interpretive nature of classroom transcripts than conventional subword tokenization. We systematically evaluate five different sentence embeddings under a data-efficient training regime designed to prevent overfitting.
