Search and Filter

Submit a research study

Contribute to the repository:

Add a paper

Student

Assessing Problem Decomposition In Cs1 For The Genai Era

Problem decomposition--the ability to break down a large task into smaller, well-defined components--is a critical skill for effectively designing and creating large programs, but it is often not included in introductory computer science curricula. With the rise of generative AI (GenAI), students even at the introductory level are able to generate large quantities of code, and it is becoming increasingly important to equip them with the ability to decompose problems.

Beyond Algorethics: Addressing The Ethical And Anthropological Challenges Of Ai Recommender Systems

This paper examines the ethical and anthropological challenges posed by AI-driven recommender systems (RSs), which increasingly shape digital environments and social interactions. By curating personalized content, RSs do not merely reflect user preferences but actively construct experiences across social media, entertainment platforms, and e-commerce. Their influence raises concerns over privacy, autonomy, and mental well-being, while existing approaches such as "algorethics" - the effort to embed ethical principles into algorithmic design - remain insufficient.

Exploring The Use Of Chatgpt By Computer Science Students In Software Development: Applications, Ethical Considerations, And Insights For Engineering Education

ChatGPT has been increasingly used in computer science, offering efficient support across software development tasks. While it helps students navigate programming challenges, its use also raises concerns about academic integrity and overreliance. Despite growing interest in this topic, prior research has largely relied on surveys, emphasizing trends over in-depth analysis of students' strategies and ethical awareness.

Report From Workshop On Dialogue Alongside Artificial Intelligence

Educational dialogue -- the collaborative exchange of ideas through talk -- is widely recognized as a catalyst for deeper learning and critical thinking in and across contexts. At the same time, artificial intelligence (AI) has rapidly emerged as a powerful force in education, with the potential to address major challenges, personalize learning, and innovate teaching practices. However, these advances come with significant risks: rapid AI development can undermine human agency, exacerbate inequities, and outpace our capacity to guide its use with sound policy.

Cognitively-Inspired Episodic Memory Architectures For Accurate And Efficient Character Ai

Large language models show promise for embodying historical characters in dialogue systems, but existing approaches face a critical trade-off: simple retrieval-augmented generation produces shallow responses, while multi-stage reflection achieves depth at prohibitive latency. We present an architecture that resolves this tension through offline data augmentation and efficient parallel retrieval from structured episodic memory.

Examining The Usage Of Generative Ai Models In Student Learning Activities For Software Programming

The rise of Generative AI (GenAI) tools like ChatGPT has created new opportunities and challenges for computing education. Existing research has primarily focused on GenAI's ability to complete educational tasks and its impact on student performance, often overlooking its effects on knowledge gains. In this study, we investigate how GenAI assistance compares to conventional online resources in supporting knowledge gains across different proficiency levels.

A Theoretical Framework Of Student Agency In AI-Assisted Learning: A Grounded Theory Approach

Generative AI(GenAI) is a kind of AI model capable of producing human-like content in various modalities, including text, image, audio, video, and computer programming. Although GenAI offers great potential for education, its value often depends on students' ability to engage with it actively, responsibly, and critically - qualities central to student agency. Nevertheless, student agency has long been a complex and ambiguous concept in educational discourses, with few empirical studies clarifying its distinct nature and process in AI-assisted learning environments.

Cllmrec: Llm-Powered Cognitive-Aware Concept Recommendation Via Semantic Alignment And Prerequisite Knowledge Distillation

The growth of Massive Open Online Courses (MOOCs) presents significant challenges for personalized learning, where concept recommendation is crucial. Existing approaches typically rely on heterogeneous information networks or knowledge graphs to capture conceptual relationships, combined with knowledge tracing models to assess learners' cognitive states. However, these methods face significant limitations due to their dependence on high-quality structured knowledge graphs, which are often scarce in real-world educational scenarios.

Chatgpt-5 In Secondary Education: A Mixed-Methods Analysis Of Student Attitudes, Ai Anxiety, And Hallucination-Aware Use

This mixed-methods study examined secondary students' interactions with the generative AI chatbot ChatGPT-5 in a formal classroom setting, focusing on attitudes, anxiety, and responses to hallucinated outputs. Participants were 109 16-year-old students from three Greek high schools who used ChatGPT-5 during an eight-hour intervention in the course "Technology." Students engaged in information seeking, CV generation, document and video summarization, image generation, quiz creation, and age-appropriate explanations, including tasks deliberately designed to elicit hallucinations.