Search and Filter

Submit a research study

Contribute to the repository:

Add a paper

Outcomes – Other Academic

On The Role And Impact Of Genai Tools In Software Engineering Education

Context. The rise of generative AI (GenAI) tools like ChatGPT and GitHub Copilot has transformed how software is learned and written. In software engineering (SE) education, these tools offer new opportunities for support, but also raise concerns about over-reliance, ethical use, and impacts on learning. Objective. This study investigates how undergraduate SE students use GenAI tools, focusing on the benefits, challenges, ethical concerns, and instructional expectations that shape their experiences. Method. We conducted a survey with 130 undergraduate students from two universities.

Collaclassroom: An Al-Augmented Collaborative Learning Platform With Llm Support In The Context Of Bangladeshi University Students

CollaClassroom is an AI-enhanced platform that embeds large language models (LLMs) into both individual and group study panels to support real-time collaboration. We evaluate CollaClassroom with Bangladeshi university students (N = 12) through a small-group study session and a pre-post survey. Participants have substantial prior experience with collaborative learning and LLMs and express strong receptivity to LLM-assisted study (92% agree/strongly agree).

Automated Program Repair Of Uncompilable Student Code

A significant portion of student programming submissions in CS1 learning environments are uncompilable, limiting their use in student modeling and downstream knowledge tracing. Traditional modeling pipelines often exclude these cases, discarding observations of student learning. This study investigates automated program repair as a strategy to recover uncompilable code while preserving students' structural intent for use in student modeling. Within this framework, we assess large language models (LLMs) as repair agents under high- and low-context prompting conditions.

Build Ai Assistants Using Large Language Models And Agents To Enhance The Engineering Education Of Biomechanics

While large language models (LLMs) have demonstrated remarkable versatility across a wide range of general tasks, their effectiveness often diminishes in domain-specific applications due to inherent knowledge gaps. Moreover, their performance typically declines when addressing complex problems that require multi-step reasoning and analysis.

Enhancing Large Language Models For Automated Homework Assessment In Undergraduate Circuit Analysis

This research full paper presents an enhancement pipeline for large language models (LLMs) in assessing homework for an undergraduate circuit analysis course, aiming to improve LLMs' capacity to provide personalized support to electrical engineering students. Existing evaluations have demonstrated that GPT-4o possesses promising capabilities in assessing student homework in this domain. Building on these findings, we enhance GPT-4o's performance through multi-step prompting, contextual data augmentation, and the incorporation of targeted hints.

Edueval: A Hierarchical Cognitive Benchmark For Evaluating Large Language Models In Chinese Education

Large language models (LLMs) demonstrate significant potential for educational applications. However, their unscrutinized deployment poses risks to educational standards, underscoring the need for rigorous evaluation. We introduce EduEval, a comprehensive hierarchical benchmark for evaluating LLMs in Chinese K-12 education.

Generative Ai As A Learning Buddy And A Teaching Assistant: Preservice Teachers' Use And Attitudes

This cross-sectional study investigates how preservice teachers in the Global South engage with Generative Artificial Intelligence across academic and instructional tasks while navigating infrastructural barriers such as limited internet access and high data costs. The study surveyed 167 preservice teachers from four teacher education institutions in Ghana.

Classifying German Language Proficiency Levels Using Large Language Models

Assessing language proficiency is essential for education, as it enables instruction tailored to learners needs. This paper investigates the use of Large Language Models (LLMs) for automatically classifying German texts according to the Common European Framework of Reference for Languages (CEFR) into different proficiency levels. To support robust training and evaluation, we construct a diverse dataset by combining multiple existing CEFR-annotated corpora with synthetic data.

Autosynth: Automated Workflow Optimization For High-Quality Synthetic Dataset Generation Via Monte Carlo Tree Search

Supervised fine-tuning (SFT) of large language models (LLMs) for specialized tasks requires high-quality datasets, but manual curation is prohibitively expensive. Synthetic data generation offers scalability, but its effectiveness relies on complex, multi-stage workflows, integrating prompt engineering and model orchestration. Existing automated workflow methods face a cold start problem: they require labeled datasets for reward modeling, which is especially problematic for subjective, open-ended tasks with no objective ground truth.

Llms4All: A Review Of Large Language Models Across Academic Disciplines

Cutting-edge Artificial Intelligence (AI) techniques keep reshaping our view of the world. For example, Large Language Models (LLMs) based applications such as ChatGPT have shown the capability of generating human-like conversation on extensive topics. Due to the impressive performance on a variety of language-related tasks (e.g., open-domain question answering, translation, and document summarization), one can envision the far-reaching impacts that can be brought by the LLMs with broader real-world applications (e.g., customer service, education and accessibility, and scientific discovery).