Consistently Simulating Human Personas With Multi-Turn Reinforcement Learning
Large Language Models (LLMs) are increasingly used to simulate human users in interactive settings such as therapy, education, and social role-play. While these simulations enable scalable training and evaluation of AI agents, off-the-shelf LLMs often drift from their assigned personas, contradict earlier statements, or abandon role-appropriate behavior. We introduce a unified framework for evaluating and improving persona consistency in LLM-generated dialogue.
