Search and Filter

Submit a research study

Contribute to the repository:

Add a paper

Educator

Human Experts' Evaluation Of Generative Ai For Contextualizing Steam Education In The Global South

STEAM education in many parts of the Global South remains abstract and weakly connected to learners sociocultural realities. This study examines how human experts evaluate the capacity of Generative AI (GenAI) to contextualize STEAM instruction in these settings. Using a convergent mixed-methods design grounded in human-centered and culturally responsive pedagogy, four STEAM education experts reviewed standardized Ghana NaCCA lesson plans and GenAI-generated lessons created with a customized Culturally Responsive Lesson Planner (CRLP).

Ai-Enabled Grading With Near-Domain Data For Scaling Feedback With Human-Level Accuracy

Constructed-response questions are crucial to encourage generative processing and test a learner's understanding of core concepts. However, the limited availability of instructor time, large class sizes, and other resource constraints pose significant challenges in providing timely and detailed evaluation, which is crucial for a holistic educational experience. In addition, providing timely and frequent assessments is challenging since manual grading is labor intensive, and automated grading is complex to generalize to every possible response scenario.

Artificial Intelligence In Elementary Stem Education: A Systematic Review Of Current Applications And Future Challenges

Artificial intelligence (AI) is transforming elementary STEM education, yet evidence remains fragmented. This systematic review synthesizes 258 studies (2020-2025) examining AI applications across eight categories: intelligent tutoring systems (45% of studies), learning analytics (18%), automated assessment (12%), computer vision (8%), educational robotics (7%), multimodal sensing (6%), AI-enhanced extended reality (XR) (4%), and adaptive content generation.

Privacy-Preserving Distributed Link Predictions Among Peers In Online Classrooms Using Federated Learning

Social interactions among classroom peers, represented as social learning networks (SLNs), play a crucial role in enhancing learning outcomes. While SLN analysis has recently garnered attention, most existing approaches rely on centralized training, where data is aggregated and processed on a local/cloud server with direct access to raw data. However, in real-world educational settings, such direct access across multiple classrooms is often restricted due to privacy concerns.

Small Models, Big Support: A Local Llm Framework For Educator-Centric Content Creation And Assessment With Rag And Cag

While Large Language Models (LLMs) are increasingly applied in student-facing educational tools, their potential to directly support educators through locally deployable and customizable solutions remains underexplored. Many existing approaches rely on proprietary, cloud-based systems that raise significant cost, privacy, and control concerns for educational institutions. To address these barriers, we introduce an end-to-end, open-source framework that empowers educators using small (3B-7B parameter), locally deployable LLMs.

Ai & Data Competencies: Scaffolding Holistic Ai Literacy In Higher Education

This chapter introduces the AI & Data Acumen Learning Outcomes Framework, a comprehensive tool designed to guide the integration of AI literacy across higher education. Developed through a collaborative process, the framework defines key AI and data-related competencies across four proficiency levels and seven knowledge dimensions. It provides a structured approach for educators to scaffold student learning in AI, balancing technical skills with ethical considerations and sociocultural awareness.

Large Language Models For Education And Research: An Empirical And User Survey-Based Analysis

Pretrained Large Language Models (LLMs) have achieved remarkable success across diverse domains, with education and research emerging as particularly impactful areas. Among current state-of-the-art LLMs, ChatGPT and DeepSeek exhibit strong capabilities in mathematics, science, medicine, literature, and programming. In this study, we present a comprehensive evaluation of these two LLMs through background technology analysis, empirical experiments, and a real-world user survey.

Aiot-Based Smart Education System: A Dual-Layer Authentication And Context-Aware Tutoring Framework For Learning Environments.

The AIoT-Based Smart Education System integrates Artificial Intelligence and IoT to address persistent challenges in contemporary classrooms: attendance fraud, lack of personalization, student disengagement, and inefficient resource use.

Report From Workshop On Dialogue Alongside Artificial Intelligence

Educational dialogue -- the collaborative exchange of ideas through talk -- is widely recognized as a catalyst for deeper learning and critical thinking in and across contexts. At the same time, artificial intelligence (AI) has rapidly emerged as a powerful force in education, with the potential to address major challenges, personalize learning, and innovate teaching practices. However, these advances come with significant risks: rapid AI development can undermine human agency, exacerbate inequities, and outpace our capacity to guide its use with sound policy.