Search and Filter

Submit a research study

Contribute to the repository:

Add a paper

Analyzing

Liberating Logic In The Age Of Ai: Going Beyond Programming With Computational Thinking

Mastering one or more programming languages has historically been the gateway to implementing ideas on a computer. Today, that gateway is widening with advances in large language models (LLMs) and artificial intelligence (AI)-powered coding assistants. What matters is no longer just fluency in traditional programming languages but the ability to think computationally by translating problems into forms that can be solved with computing tools.

Aiot-Based Smart Education System: A Dual-Layer Authentication And Context-Aware Tutoring Framework For Learning Environments.

The AIoT-Based Smart Education System integrates Artificial Intelligence and IoT to address persistent challenges in contemporary classrooms: attendance fraud, lack of personalization, student disengagement, and inefficient resource use.

Report From Workshop On Dialogue Alongside Artificial Intelligence

Educational dialogue -- the collaborative exchange of ideas through talk -- is widely recognized as a catalyst for deeper learning and critical thinking in and across contexts. At the same time, artificial intelligence (AI) has rapidly emerged as a powerful force in education, with the potential to address major challenges, personalize learning, and innovate teaching practices. However, these advances come with significant risks: rapid AI development can undermine human agency, exacerbate inequities, and outpace our capacity to guide its use with sound policy.

A Multi-Agent Psychological Simulation System For Human Behavior Modeling

Training and education in human-centered fields require authentic practice, yet realistic simulations of human behavior have remained limited. We present a multi-agent psychological simulation system that models internal cognitive-affective processes to generate believable human behaviors. In contrast to black-box neural models, this system is grounded in established psychological theories (e.g., self-efficacy, mindset, social constructivism) and explicitly simulates an ``inner parliament'' of agents corresponding to key psychological factors.

Cognitively-Inspired Episodic Memory Architectures For Accurate And Efficient Character Ai

Large language models show promise for embodying historical characters in dialogue systems, but existing approaches face a critical trade-off: simple retrieval-augmented generation produces shallow responses, while multi-stage reflection achieves depth at prohibitive latency. We present an architecture that resolves this tension through offline data augmentation and efficient parallel retrieval from structured episodic memory.

Synthguard: An Open Platform For Detecting Ai-Generated Multimedia With Multimodal Llms

Artificial Intelligence (AI) has made it possible for anyone to create images, audio, and video with unprecedented ease, enriching education, communication, and creative expression. At the same time, the rapid rise of AI-generated media has introduced serious risks, including misinformation, identity misuse, and the erosion of public trust as synthetic content becomes increasingly indistinguishable from real media.

Exploring The Psychometric Validity Of Ai-Generated Student Responses: A Study On Virtual Personas' Learning Motivation

This study explores whether large language models (LLMs) can simulate valid student responses for educational measurement. Using GPT -4o, 2000 virtual student personas were generated. Each persona completed the Academic Motivation Scale (AMS). Factor analyses(EFA and CFA) and clustering showed GPT -4o reproduced the AMS structure and distinct motivational subgroups.

GoldMind: A Teacher-Centered Knowledge Management System for Higher Education - Lessons from Iterative Design

Designing Knowledge Management Systems (KMSs) for higher education requires addressing complex human-technology interactions, especially where staff turnover and changing roles create ongoing challenges for reusing knowledge. While advances in process mining and Generative AI enable new ways of designing features to support knowledge management, existing KMSs often overlook the realities of educators' workflows, leading to low adoption and limited impact.

Automated Program Repair Of Uncompilable Student Code

A significant portion of student programming submissions in CS1 learning environments are uncompilable, limiting their use in student modeling and downstream knowledge tracing. Traditional modeling pipelines often exclude these cases, discarding observations of student learning. This study investigates automated program repair as a strategy to recover uncompilable code while preserving students' structural intent for use in student modeling. Within this framework, we assess large language models (LLMs) as repair agents under high- and low-context prompting conditions.

Edueval: A Hierarchical Cognitive Benchmark For Evaluating Large Language Models In Chinese Education

Large language models (LLMs) demonstrate significant potential for educational applications. However, their unscrutinized deployment poses risks to educational standards, underscoring the need for rigorous evaluation. We introduce EduEval, a comprehensive hierarchical benchmark for evaluating LLMs in Chinese K-12 education.