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 This appendix provides additional detail about several issues raised in the main body of 

the report: the use of the graduation rate as an alternative outcome measure in the cost function, 

the influence of Los Angeles Unified in the data, the calculation of pupil weights from the cost 

function coefficients, and the bias from omitted variables in both the cost and production 

functions. 

 

Alternative Outcome Measures 

 The main report focuses on the results from a cost function for California in which the 

measure of performance is the Academic Performance Index.  As shown in Table 3 in the main 

report, results are quite similar when the API is replaced with percent proficient on the California 

Standards Test in math and English Language Arts.  I also estimated a specification in which 

performance is measured by the four-year graduation rate.  The calculation of this variable is 

based on the one-year dropout rates for grades nine through twelve and roughly estimates the 

probability that a student will not drop out during her high school years.1 Note that this measure 

of performance only applies to high schools so the sample excludes all elementary districts.  This 

measure is also likely to be a large underestimate of the actual percentage of students who do 

leave sometime between ninth and twelfth grades (see Losen and Wald, 2005, for a discussion of 

the problems with using the cumulative one-year measure). 

                                                 
1 Specifically, the four-year graduation rate is equal to one minus ((1-(d9/e9))*(1-(d10/e10))*(1-(d11/e11))*(1-
(d12/e12))))*100, where d# is the number of dropouts in each grade and e# is the number of students enrolled in 
each grade.  Thus, the four-year rate is a cumulative calculation of the one-year rates, rather than a longitudinal 
measure based on following a cohort over time. 



 The results from the graduation rate specification is shown in table 3A.  For ease of 

comparison, the first two columns show the results with the average API and CST measures.  

The coefficients in the specification with the graduation rate are noticeably different in a few 

ways, though this is also not particularly surprising, given the change in the sample.  The 

coefficients on poverty and regular special education both noticeably decrease while the 

coefficients on non-Spanish-speaking English Learners and severely disabled both noticeably 

increase.  However, we should keep in mind that there is also likely to be much more noise in the 

dropout variable; therefore, while it is reassuring that the overall pattern is consistent with the 

models using test score measures, the results for this specification should be taken as more 

suggestive than definitive. 

 

Influence of Los Angeles Unified 

 With almost 700,000 students in 2004-05, Los Angeles Unified is significantly larger 

than any other district in the state.  Given that the cost function is pupil-weighted (giving 

relatively more weight to larger districts), it is possible that L.A. alone could be skewing the 

results.  To check this, Los Angeles was dropped from the analysis and the regression re-

estimated.  The results are shown in the fourth column of Table 3A.  Although all the 

coefficients shift slightly, the only change of any noticeable magnitude is the effect of district 

size.  When Los Angeles is included, the coefficients on enrollment and enrollment-squared 

indicate that there are economies of scale up to a district enrollment of 28,992; above that point, 

costs begin to rise again.  When Los Angeles is excluded, the bottom of the ‘U’ drops to 19,280. 

 

Calculation of Pupil Weights 



To generate a pupil weight, say for poverty, the cost function is used to calculate a base 

cost per pupil for each district, under the assumption of no students in poverty.  That is, all of the 

other district characteristics are held equal to their original values but the percent of students in 

poverty is set equal to zero.  By multiplying this prediction by the number of students in each 

district, this gives us a base prediction of total expenditures for each district in the absence of 

poverty.  Next, the cost function is used to calculate per-pupil cost for each district at the actual 

level of poverty, i.e., the original predicted costs discussed in Table 4, in which percent of 

students in poverty was set equal to each district’s actual value.  Again, this is multiplied by the 

total number of students to get total, rather than per-pupil, spending.  The difference between 

these two predictions is divided by the number of poor students to arrive at a measure of 

additional cost per student in poverty: 

 

(Total Spending, Actual % Poverty) – (Total Spending, Zero Poverty) Marginal Cost of 

a Poor Student  

= 

Number of Students in Poverty 

 

A district-specific poverty weight is then determined by dividing this marginal cost by the base 

per-pupil cost for each (non-poor) student.  For example, if the marginal cost in a particular 

district is $1000 and the district’s base cost is $5000, then the district’s poverty weight is 0.2 

(=1000/5000), implying that poor students require twenty percent more resources.  This 

procedure can also be repeated to generate a weight for ELs, special education, or any other 

variable in the cost function.  See Duncombe and Yinger (2005) for a full discussion of using 

cost functions to generate pupil weights.  Although this yields a different weight for each district, 



these are typically clustered fairly tightly around the average2 so it would not be inappropriate to 

use the average value as a state-level weight. 

 

Omitted Variables Bias in Cost Function 

If there are factors that are correlated with spending and student outcomes but that are not 

explicitly included in the cost function estimation, this can create systematic error in the 

coefficients.  For simplicity, let us assume that spending is a function of two variables, test 

scores and inefficiency.  If we could measure inefficiency, we would estimate the following 

model: 

(i)  S = β0 + β1T + β2I + us 

where β1 captures the ‘true’ relationship between spending and test scores, β2 captures the 

correlation between spending and inefficiency, and us is random error.  Since we cannot observe 

inefficiency, we instead estimate a model with just test scores: 

(ii)  S = = β0’ + β1’T + v 

where v = β2I + us.  If we estimate this model with only test scores, we get the estimated 

coefficient, β̂ . 

 Now assume that test scores and inefficiency are also correlated and we can express that 

by setting up inefficiency as a function of test scores: 

 (iii) I = δ0 + δ1T + ui 

so δ1 represents the relationship between inefficiency in test scores.  If we plug (iii) into (i), we 

get: 

(iv) S = β0 + β1T + β2(δ0 + δ1T + ui) + us = β0’ +(β1 + β2δ1)T + u 

                                                 
2 For example, the district-specific poverty weights in California range from 0.28 to 0.32, around the mean of 0.3. 



Thus, if spending is regressed solely on test scores, as in (ii), the expected value of β̂  is not 

equal to the true value, β1, but instead is equal to (β1 + β2δ1).  β2 is the correlation between 

spending and inefficiency and δ1 is the correlation between test scores and inefficiency.  If either 

of these is zero, then the bias goes away and the expected value of β̂  is the true value β1.  If one 

correlation is positive and the other is negative, then β̂  < β1.  If both correlations are positive, 

then β̂  > β1.3 The size of the bias will depend on the strength of these two correlations. 

 

Production Function as the inverse of the Cost Function 

The cost function is estimated with spending as a log-linear function of test scores, 

teacher salaries, and student and district characteristics: 

ln S = β0 +β1ln API +β2Sal + β3Student Char +β4District Char + us 

In a production function, outcomes are modeled as a function of spending and the other 

variables:  

ln API = α0 + α1ln S + α2Sal + α3Student Char + α4District Char + uT 

In theory, the cost function coefficient on student performance, and the production function 

coefficient on spending would be inverses of each other.  That is, using the above notation, 

α1=1/β1.  If the data and model were perfect (i.e., correctly specified with no unobservable 

variables), estimates from the cost function and production function should be similar.  However, 

if spending and test scores are both correlated with unobservable inefficiency, then the estimates 

in both cases will be biased, following the logic outlined in the previous section.  

                                                 
3 Note that the analysis is significantly more complicated when there are more independent variables, as there are 
with the California cost function.  However, the intuition about the direction of the bias is generally the same 
(Wooldridge, 2006). 



 Note that if the omitted variable is positively correlated with spending and negatively 

correlated with test scores, the bias will lead the estimated coefficients to be smaller than their 

true values.  Given that the relationship between spending and test scores appears to be positive 

( β̂  > 0, α̂ > 0), this means that the estimated coefficients will be closer to zero.   This creates a 

serious problem because a small coefficient on test scores in the cost function and a small 

coefficient on spending in the production function have opposite implications.  A small 

coefficient on test scores in the cost function indicates that a large change in test scores is 

associated with a small change in dollars; this could be interpreted as implying that dollars are 

extremely effective.  In contrast, a small coefficient on spending in the production function 

indicates that a small change in dollars buys only a small change in test scores; this could be 

interpreted as implying that dollars are not very effective.  For a district to achieve any given test 

score level, the cost function would predict a much lower spending level than would the 

production function.  Without the bias, the two estimates should be quite similar.  Thus, the fact 

that the cost function estimates are so much smaller than the production function estimates is one 

indication that the bias does, indeed, exist, and that the magnitude is not negligible. 
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Independent variables API CST
Graduation 

Rate
API - without 

LA Unified

2004-05 Performance 0.339* 0.308* 0.324*
[2.29] [2.63] [2.21]

Four-year Graduation Rate 0.001
[0.72]

Teacher Salary Index 0.321** 0.296* 0.331** 0.346**
[2.95] [2.61] [3.33] [3.29]

Log of student enrollment -0.286** -0.266** -0.351** -0.371**
[11.24] [10.84] [10.10] [6.19]

Square of log of student enrollment 0.014** 0.013** 0.017** 0.019**
[12.31] [11.88] [10.44] [5.80]

Percent of students eligible for free and reduced price lunch 0.283** 0.344** 0.219** 0.265**
[3.78] [3.60] [4.43] [3.31]

Percent of students Spanish-speaking English Learners 0.081 0.078 0.013 0.098
[1.09] [1.06] [0.16] [1.22]

Percent of students non-Spanish-speaking English Learners 0.237 0.204 0.468* 0.203
[1.27] [1.08] [2.38] [1.12]

Percent of students in special education 1.070** 1.351** 0.664* 1.170**
[4.40] [5.30] [2.34] [4.98]

Percent of students with high-cost disabilities 6.506** 5.685* 8.897** 6.143**
[2.98] [2.47] [4.16] [3.04]

Percent of students enrolled in high school 0.247** 0.232** 0.211** 0.240**
[7.89] [5.03] [6.89] [7.15]

Herfindahl (efficiency) index -0.02 -0.06 0.04 -0.06
[0.20] [0.45] [0.35] [0.51]

Intercept 7.423** 9.434** 10.019** 7.890**
[7.07] [41.66] [46.43] [7.44]

Observations 937 808 407 937

** indicates statistically significant at the 5% level

Table 3a

Education Cost Function, 2004-05
California K-12 School Districts

Dependent variable: Log of expenditures per pupil

 


